Appearance
question:额现在的vit_ce是这样的:# 将 4输入分开,构建新的相同模态结合的2输入,2分支 import math import logging from functools import partial from collections import OrderedDict from copy import deepcopy import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import to_2tuple from lib.models.layers.patch_embed import PatchEmbed, PatchEmbed_event, xcorr_depthwise from .utils import combine_tokens, recover_tokens from .vit import VisionTransformer from ..layers.attn_blocks import CEBlock from .ad_counter_guide import Counter_Guide_Enhanced _logger = logging.getLogger(__name__) class VisionTransformerCE(VisionTransformer): """ Vision Transformer with candidate elimination (CE) module A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 Includes distillation token & head support for `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None, act_layer=None, weight_init='', ce_loc=None, ce_keep_ratio=None): super().__init__() if isinstance(img_size, tuple): self.img_size = img_size else: self.img_size = to_2tuple(img_size) self.patch_size = patch_size self.in_chans = in_chans self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_tokens = 2 if distilled else 1 norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) self.pos_embed_event = PatchEmbed_event(in_chans=32, embed_dim=768, kernel_size=4, stride=4) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule blocks = [] ce_index = 0 self.ce_loc = ce_loc for i in range(depth): ce_keep_ratio_i = 1.0 if ce_loc is not None and i in ce_loc: ce_keep_ratio_i = ce_keep_ratio[ce_index] ce_index += 1 blocks.append( CEBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, keep_ratio_search=ce_keep_ratio_i) ) self.blocks = nn.Sequential(*blocks) self.norm = norm_layer(embed_dim) self.init_weights(weight_init) # 添加交互模块counter_guide # self.counter_guide = Counter_Guide(768, 768) self.counter_guide = Counter_Guide_Enhanced(768, 768) def forward_features(self, z, x, event_z, event_x, mask_z=None, mask_x=None, ce_template_mask=None, ce_keep_rate=None, return_last_attn=False ): # 分支1 处理流程 B, H, W = x.shape[0], x.shape[2], x.shape[3] x = self.patch_embed(x) z = self.patch_embed(z) z += self.pos_embed_z x += self.pos_embed_x if mask_z is not None and mask_x is not None: mask_z = F.interpolate(mask_z[None].float(), scale_factor=1. / self.patch_size).to(torch.bool)[0] mask_z = mask_z.flatten(1).unsqueeze(-1) mask_x = F.interpolate(mask_x[None].float(), scale_factor=1. / self.patch_size).to(torch.bool)[0] mask_x = mask_x.flatten(1).unsqueeze(-1) mask_x = combine_tokens(mask_z, mask_x, mode=self.cat_mode) mask_x = mask_x.squeeze(-1) if self.add_cls_token: cls_tokens = self.cls_token.expand(B, -1, -1) cls_tokens = cls_tokens + self.cls_pos_embed if self.add_sep_seg: x += self.search_segment_pos_embed z += self.template_segment_pos_embed x = combine_tokens(z, x, mode=self.cat_mode) if self.add_cls_token: x = torch.cat([cls_tokens, x], dim=1) x = self.pos_drop(x) lens_z = self.pos_embed_z.shape[1] lens_x = self.pos_embed_x.shape[1] global_index_t = torch.linspace(0, lens_z - 1, lens_z).to(x.device) global_index_t = global_index_t.repeat(B, 1) global_index_s = torch.linspace(0, lens_x - 1, lens_x).to(x.device) global_index_s = global_index_s.repeat(B, 1) removed_indexes_s = [] # # 分支2 处理流程 event_x = self.pos_embed_event(event_x) event_z = self.pos_embed_event(event_z) event_x += self.pos_embed_x event_z += self.pos_embed_z event_x = combine_tokens(event_z, event_x, mode=self.cat_mode) if self.add_cls_token: event_x = torch.cat([cls_tokens, event_x], dim=1) lens_z = self.pos_embed_z.shape[1] lens_x = self.pos_embed_x.shape[1] global_index_t1 = torch.linspace(0, lens_z - 1, lens_z).to(event_x.device) global_index_t1 = global_index_t1.repeat(B, 1) global_index_s1 = torch.linspace(0, lens_x - 1, lens_x).to(event_x.device) global_index_s1 = global_index_s1.repeat(B, 1) removed_indexes_s1 = [] for i, blk in enumerate(self.blocks): # 第一个分支处理 x, global_index_t, global_index_s, removed_index_s, attn = blk(x, global_index_t, global_index_s, mask_x, ce_template_mask, ce_keep_rate) # 第二个分支处理 event_x, global_index_t1, global_index_s1, removed_index_s1, attn1 = blk(event_x, global_index_t1, global_index_s1, mask_x, ce_template_mask, ce_keep_rate) if self.ce_loc is not None and i in self.ce_loc: removed_indexes_s.append(removed_index_s) removed_indexes_s1.append(removed_index_s1) # 在第1层和第2层增加counter_guide模块,验证早期融合效果 if i in [0,1,2,3,4,5,6,7,8,9,10,11] : enhanced_x, enhanced_event_x = self.counter_guide(x, event_x) # 将增强后的特征与原特征相加 x = x + enhanced_x event_x = event_x + enhanced_event_x # 应用LayerNorm归一化处理 x = self.norm(x) event_x = self.norm(event_x) x_cat = torch.cat([event_x,x], dim=1) x = x_cat aux_dict = { "attn": attn, "attn1": attn1, "removed_indexes_s": removed_indexes_s, # used for visualization "removed_indexes_s1": removed_indexes_s1, } return x, aux_dict def forward(self, z, x, event_z, event_x, ce_template_mask=None, ce_keep_rate=None, tnc_keep_rate=None, return_last_attn=False): x, aux_dict = self.forward_features(z, x, event_z, event_x, ce_template_mask=ce_template_mask, ce_keep_rate=ce_keep_rate,) return x, aux_dict def _create_vision_transformer(pretrained=False, **kwargs): model = VisionTransformerCE(**kwargs) if pretrained: if 'npz' in pretrained: model.load_pretrained(pretrained, prefix='') else: checkpoint = torch.load(pretrained, map_location="cpu") missing_keys, unexpected_keys = model.load_state_dict(checkpoint["model"], strict=False) print('Load pretrained model from: ' + pretrained) return model def vit_base_patch16_224_ce(pretrained=False, **kwargs): """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). """ model_kwargs = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_vision_transformer(pretrained=pretrained, **model_kwargs) return model def vit_large_patch16_224_ce(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). """ model_kwargs = dict( patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) model = _create_vision_transformer(pretrained=pretrained, **model_kwargs) return model,那么调整CEUTrackActor的代码,说明调整的原理
answer:为了适应新的`VisionTransformerCE`模型结构,`CEUTrackActor`需要通过以下步骤进行调整,确保能够处理带有事件图像输入的双分支结构以及处理由`Counter_Guide`模块增强的特征。下面详细说明调整原理和必要的代码修改。 # 调整原理 1. **数据输入准备**:`CEUTrackActor`需要同时处理两种不同模式的图像——常规RGB图像和事件图像。每种图像都会通过`VisionTransformerCE`模型的相应分支进行处理。 2. **模型前向传播**:在进行前向传播时,`CEUTrackActor`要能够将这两种模式的图像输入到模型中,并从模型获取合并后的输出特征。 3. **损失函数的适应**:根据新模型的输出结构,`CEUTrackActor`可能需要调整损失函数,来确保模型能有效学习从两种不同模式图像中提取并融合的特征。 # 代码调整 假设原来的`CEUTrackActor`代码主要是针对单一输入的情况设计的,现在需要对其进行一系列调整来支持新的`VisionTransformerCE`模型结构: 1. **调整数据加载**:需要确保两种模式的图像数据被正确加载并传入模型。比如说,需要在调用网络前准备好`template_images`、`search_images`、`template_event`和`search_event`。 ```python def forward_pass(self, data): ... template_images = data['template_images'][0].view(-1, *data['template_images'].shape[2:]) search_images = data['search_images'][0].view(-1, *data['search_images'].shape[2:]) template_event = data['template_event'][0].view(-1, *data['template_event'].shape[2:]) search_event = data['search_event'][0].view(-1, *data['search_event'].shape[2:]) # 使用调整后的模型进行前向传播 out_dict = self.net(template=template_images, search=search_images, event_template=template_event, event_search=search_event, ce_template_mask=box_mask_z, ce_keep_rate=ce_keep_rate, return_last_attn=False) ... ``` 2. **损失函数调整**:考虑损失计算时,除了原有的目标(例如,跟踪精度、边界框对齐等),还可能需要考虑两个分支输出特征融合的效果。如果`VisionTransformerCE`模型返回了相关的辅助信息(例如,模型融合特征的评估指标),可以将其用于损失函数的额外部分。 3. **监控和调试**:在训练过程中,特别是初期阶段,需要密切关注模型的表现,比如通过验证集的表现来进行超参数的微调,确保两种模式的图像都能有效贡献到最终的模型表现中。 通过上述调整,`CEUTrackActor`能够充分利用`VisionTransformerCE`模型结构对常规和事件图像进行有效融合,并通过合并后的特征提高跟踪任务的性能。
question:需要对 def compute_losses(self, pred_dict, gt_dict, return_status=True): # gt gaussian map gt_bbox = gt_dict['search_anno'][-1] # (Ns, batch, 4) (x1,y1,w,h) -> (batch, 4) gt_gaussian_maps = generate_heatmap(gt_dict['search_anno'], self.cfg.DATA.SEARCH.SIZE, self.cfg.MODEL.BACKBONE.STRIDE) gt_gaussian_maps = gt_gaussian_maps[-1].unsqueeze(1) # Get boxes pred_boxes = pred_dict['pred_boxes'] if torch.isnan(pred_boxes).any(): raise ValueError("Network outputs is NAN! Stop Training") num_queries = pred_boxes.size(1) pred_boxes_vec = box_cxcywh_to_xyxy(pred_boxes).view(-1, 4) # (B,N,4) --> (BN,4) (x1,y1,x2,y2) gt_boxes_vec = box_xywh_to_xyxy(gt_bbox)[:, None, :].repeat((1, num_queries, 1)).view(-1, 4).clamp(min=0.0, max=1.0) # (B,4) --> (B,1,4) --> (B,N,4) # compute giou and iou try: giou_loss, iou = self.objective['giou'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) except: giou_loss, iou = torch.tensor(0.0).cuda(), torch.tensor(0.0).cuda() # compute l1 loss l1_loss = self.objective['l1'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) # compute location loss if 'score_map' in pred_dict: location_loss = self.objective['focal'](pred_dict['score_map'], gt_gaussian_maps) else: location_loss = torch.tensor(0.0, device=l1_loss.device) rank_loss = self.loss_rank(pred_dict,gt_dict['search_anno'], gt_dict['template_anno']) # weighted sum loss = self.loss_weight['giou'] * giou_loss + self.loss_weight['l1'] * l1_loss + self.loss_weight['focal'] * location_loss + rank_loss*1.2 if return_status: # status for log mean_iou = iou.detach().mean() status = {"Loss/total": loss.item(), "Loss/giou": giou_loss.item(), "Loss/l1": l1_loss.item(), "Loss/location": location_loss.item(), "IoU": mean_iou.item()} return loss, status else: return loss def _random_permute(self,matrix): # matrix = random.choice(matrix) b, c, h, w = matrix.shape idx = [ torch.randperm(c).to(matrix.device) for i in range(b)] idx = torch.stack(idx, dim=0)[:, :, None, None].repeat([1,1,h,w]) # idx = torch.randperm(c)[None,:,None,None].repeat([b,1,h,w]).to(matrix.device) matrix01 = torch.gather(matrix, 1, idx) return matrix01 def crop_flag(self, flag, global_index_s, global_index_t,H1 = 64, H2 = 256): B,Ls = global_index_s.shape B, Lt = global_index_t.shape B,C,L1,L2 = flag.shape flag_t = flag[:,:,:H1,:] flag_s = flag[:,:,H1:,:] flag_t = torch.gather(flag_t,2,global_index_t[:,None,:,None].repeat([1,C,1,L2]).long()) flag_s = torch.gather(flag_s,2,global_index_s[:,None,:,None].repeat([1,C,1,L2]).long()) flag = torch.cat([flag_t, flag_s], dim = 2) flag_t = flag[:,:,:,:H1] flag_s = flag[:,:,:,H1:] flag_t = torch.gather(flag_t,3,global_index_t[:,None,None,:].repeat([1,C,int(Ls+Lt),1]).long()) flag_s = torch.gather(flag_s,3,global_index_s[:,None,None,:].repeat([1,C,int(Ls+Lt),1]).long()) flag = torch.cat([flag_t, flag_s], dim = 3) B, C, L11, L12 = flag.shape try: assert(L11 == int(Lt + Ls)) assert(L12 == int(Lt + Ls)) except: print('L11:{}, L12:{}, L1:{}, L2:{}'.format(L11, L12, L1, L2)) return flag def crop_fusion(self, flag, attn, global_index_s, global_index_t,H1 = 64, H2 = 256 ): flag = self.crop_flag(flag=flag, global_index_s=global_index_s, global_index_t=global_index_t) B,C,L1,L2 = flag.shape Ba, Ca, La, La2 = attn.shape _,idx1 = flag.mean(dim=3,keepdim=False).sort(dim=2,descending=True) # print('shape of flag:{}, idx1:{}'.format(flag.shape, idx1[:,:,:32,None].repeat([1,Ca,1,L2]).shape)) flag = torch.gather(flag,2,idx1[:,:,:32,None].repeat([1,C,1,L2]).long()) attn = torch.gather(attn,2,idx1[:,:,:32,None].repeat([1,Ca,1,L2]).long()) _,idx2 = flag.mean(dim=2,keepdim=False).sort(dim=2,descending=True) flag = torch.gather(flag,3,idx2[:,:,None,:32].repeat([1,C,32,1]).long()) attn = torch.gather(attn,3,idx2[:,:,None,:32].repeat([1,Ca,32,1]).long()) return attn * flag def loss_rank(self, outputs, targetsi, temp_annoi=None): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. """ attn = outputs['attn'] # print('attn shape:{}'.format(attn.shape)) attn1 = torch.cat([attn[:,:,114:344,57:114], attn[:,:,114:344,344:]],dim=3) attn1 = attn1.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) attn2 = torch.cat([attn[:,:,344:,:57], attn[:,:,344:,114:344]],dim=3) attn2 = attn2.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) attn = torch.cat([attn1, attn2],dim=1) B, C, H, W = attn.shape # _,s1,_ = torch.svd(attn1.reshape([B*C, H, W])) _,s1,_ = torch.svd(attn.reshape([B*C, H, W])) s01 = torch.abs(s1 - 1) return torch.mean(s01)这部分进行修改,以适应新的vit_ce
answer:针对新的`VisionTransformerCE`模型结构,其中引入了事件图像处理的分支并且在多个层次上使用了`Counter_Guide`模块来进行特征增强,`compute_losses`方法需要适度调整以更好地针对新模型的特点计算损失。此外,考虑到模型输出现在融合了两个分支的特征,我们也需要在损失函数中体现这种融合性。 # 调整损失函数 新的`VisionTransformerCE`提供了关注图的融合特征,这意味着损失函数需要考虑到融合特征(例如,通过`Counter_Guide`增强的特征)之间的关系,以及这些特征与真值标签之间的关系。具体来说,如果模型的输出结构调整为包括增强的注意力图`attn`和`attn1`,那么损失函数可能需要对这些增强的特征进行评估。 这里的`loss_rank`函数似乎已经在评估一些形式的结构化特征损失,其中使用SVD(奇异值分解)来评估注意力图。为了更进一步地适应新的模型输出,这里有几个可能的调整方向: 1. **对比损失(comparison loss)**:如果`Counter_Guide`模块的目标是增强跨模态特征的一致性,可以考虑引入对比损失来评估融合前后特征的相似度,从而促进跨模态特征的一致性。 2. **融合特征损失(fusion feature loss)**:评估融合特征与任务相关特征(例如跟踪目标的边界框)之间的对应度。基于任务的特定需求,可能需要根据融合特征来优化目标定位。 # 示例代码 假定已有的`compute_losses`函数主要用于计算和累积多个不同类型的损失。为适应新的特性,可以添加一段代码来计算新介绍的损失类型。请注意,下面的代码仅作为示意,并非可直接运行的代码。 ```python def compute_losses(self, pred_dict, gt_dict, return_status=True): ... # 原始损失计算代码 ... # 新增:计算融合特征损失,示例假定pred_dict中有enhanced特征 if 'enhanced_features' in pred_dict: enhanced_features = pred_dict['enhanced_features'] # 假定增强特征的key为'enhanced_features' # 基于enhanced_features与gt的某种度量计算fusion_feature_loss # 此处需要根据实际情况设计loss的具体计算方式 fusion_feature_loss = your_custom_loss_function(enhanced_features, gt_dict) # 将fusion_feature_loss加入到总损失中 loss += self.loss_weight['fusion_feature'] * fusion_feature_loss ... return loss, status ``` 根据你具体的场景和模型输出,`your_custom_loss_function`需要替换为具体实现。这可能涉及到计算增强特征与ground truth之间的差异,如位置误差、形状对齐或特征相似度等。调整的关键在于如何根据模型的目标及其输出来设计合适的损失函数,以最大化跨模态信息的有效融合和利用。
question:在 def forward_features(self, z, x, event_z, event_x, mask_z=None, mask_x=None, ce_template_mask=None, ce_keep_rate=None, return_last_attn=False ): # 分支1 处理流程 B, H, W = x.shape[0], x.shape[2], x.shape[3] x = self.patch_embed(x) z = self.patch_embed(z) z += self.pos_embed_z x += self.pos_embed_x if mask_z is not None and mask_x is not None: mask_z = F.interpolate(mask_z[None].float(), scale_factor=1. / self.patch_size).to(torch.bool)[0] mask_z = mask_z.flatten(1).unsqueeze(-1) mask_x = F.interpolate(mask_x[None].float(), scale_factor=1. / self.patch_size).to(torch.bool)[0] mask_x = mask_x.flatten(1).unsqueeze(-1) mask_x = combine_tokens(mask_z, mask_x, mode=self.cat_mode) mask_x = mask_x.squeeze(-1) if self.add_cls_token: cls_tokens = self.cls_token.expand(B, -1, -1) cls_tokens = cls_tokens + self.cls_pos_embed if self.add_sep_seg: x += self.search_segment_pos_embed z += self.template_segment_pos_embed x = combine_tokens(z, x, mode=self.cat_mode) if self.add_cls_token: x = torch.cat([cls_tokens, x], dim=1) x = self.pos_drop(x) lens_z = self.pos_embed_z.shape[1] lens_x = self.pos_embed_x.shape[1] global_index_t = torch.linspace(0, lens_z - 1, lens_z).to(x.device) global_index_t = global_index_t.repeat(B, 1) global_index_s = torch.linspace(0, lens_x - 1, lens_x).to(x.device) global_index_s = global_index_s.repeat(B, 1) removed_indexes_s = [] # # 分支2 处理流程 event_x = self.pos_embed_event(event_x) event_z = self.pos_embed_event(event_z) event_x += self.pos_embed_x event_z += self.pos_embed_z event_x = combine_tokens(event_z, event_x, mode=self.cat_mode) if self.add_cls_token: event_x = torch.cat([cls_tokens, event_x], dim=1) lens_z = self.pos_embed_z.shape[1] lens_x = self.pos_embed_x.shape[1] global_index_t1 = torch.linspace(0, lens_z - 1, lens_z).to(event_x.device) global_index_t1 = global_index_t1.repeat(B, 1) global_index_s1 = torch.linspace(0, lens_x - 1, lens_x).to(event_x.device) global_index_s1 = global_index_s1.repeat(B, 1) removed_indexes_s1 = [] for i, blk in enumerate(self.blocks): # 第一个分支处理 x, global_index_t, global_index_s, removed_index_s, attn = blk(x, global_index_t, global_index_s, mask_x, ce_template_mask, ce_keep_rate) # 第二个分支处理 event_x, global_index_t1, global_index_s1, removed_index_s1, attn1 = blk(event_x, global_index_t1, global_index_s1, mask_x, ce_template_mask, ce_keep_rate) if self.ce_loc is not None and i in self.ce_loc: removed_indexes_s.append(removed_index_s) removed_indexes_s1.append(removed_index_s1) # 在第1层和第2层增加counter_guide模块,验证早期融合效果 if i in [0,1,2,3,4,5,6,7,8,9,10,11] : enhanced_x, enhanced_event_x = self.counter_guide(x, event_x) # 将增强后的特征与原特征相加 x = x + enhanced_x event_x = event_x + enhanced_event_x # 应用LayerNorm归一化处理 x = self.norm(x) event_x = self.norm(event_x) x_cat = torch.cat([event_x,x], dim=1) x = x_cat aux_dict = { "attn": attn, "attn1": attn1, "removed_indexes_s": removed_indexes_s, # used for visualization "removed_indexes_s1": removed_indexes_s1, } return x, aux_dict 中返回的注意力分别是(分支1)attn和attn1(分支2),那么现在的from . import BaseActor from lib.utils.misc import NestedTensor from lib.utils.box_ops import box_cxcywh_to_xyxy, box_xywh_to_xyxy import torch from lib.utils.merge import merge_template_search from ...utils.heapmap_utils import generate_heatmap from ...utils.ce_utils import generate_mask_cond, adjust_keep_rate class CEUTrackActor(BaseActor): """ Actor for training CEUTrack models """ def __init__(self, net, objective, loss_weight, settings, cfg=None): super().__init__(net, objective) self.loss_weight = loss_weight self.settings = settings self.bs = self.settings.batchsize # batch size self.cfg = cfg def __call__(self, data): """ args: data - The input data, should contain the fields 'template', 'search', 'gt_bbox'. template_images: (N_t, batch, 3, H, W) search_images: (N_s, batch, 3, H, W) returns: loss - the training loss status - dict containing detailed losses """ # forward pass out_dict = self.forward_pass(data) # compute losses loss, status = self.compute_losses(out_dict, data) return loss, status def forward_pass(self, data): # currently only support 1 template and 1 search region assert len(data['template_images']) == 1 assert len(data['search_images']) == 1 assert len(data['template_event']) == 1 assert len(data['search_event']) == 1 template_list = [] for i in range(self.settings.num_template): template_img_i = data['template_images'][i].view(-1, *data['template_images'].shape[2:]) # (batch, 3, 128, 128) # template_att_i = data['template_att'][i].view(-1, *data['template_att'].shape[2:]) # (batch, 128, 128) template_list.append(template_img_i) search_img = data['search_images'][0].view(-1, *data['search_images'].shape[2:]) # (batch, 3, 320, 320) # search_att = data['search_att'][0].view(-1, *data['search_att'].shape[2:]) # (batch, 320, 320) template_event = data['template_event'][0].view(-1, *data['template_event'].shape[2:]) search_event = data['search_event'][0].view(-1, *data['search_event'].shape[2:]) box_mask_z = None ce_keep_rate = None if self.cfg.MODEL.BACKBONE.CE_LOC: box_mask_z = generate_mask_cond(self.cfg, template_list[0].shape[0], template_list[0].device, data['template_anno'][0]) ce_start_epoch = self.cfg.TRAIN.CE_START_EPOCH ce_warm_epoch = self.cfg.TRAIN.CE_WARM_EPOCH ce_keep_rate = adjust_keep_rate(data['epoch'], warmup_epochs=ce_start_epoch, total_epochs=ce_start_epoch + ce_warm_epoch, ITERS_PER_EPOCH=1, base_keep_rate=self.cfg.MODEL.BACKBONE.CE_KEEP_RATIO[0]) if len(template_list) == 1: template_list = template_list[0] out_dict = self.net(template=template_list, search=search_img, event_template=template_event, event_search=search_event, ce_template_mask=box_mask_z, ce_keep_rate=ce_keep_rate, return_last_attn=False) return out_dict def compute_losses(self, pred_dict, gt_dict, return_status=True): # gt gaussian map gt_bbox = gt_dict['search_anno'][-1] # (Ns, batch, 4) (x1,y1,w,h) -> (batch, 4) gt_gaussian_maps = generate_heatmap(gt_dict['search_anno'], self.cfg.DATA.SEARCH.SIZE, self.cfg.MODEL.BACKBONE.STRIDE) gt_gaussian_maps = gt_gaussian_maps[-1].unsqueeze(1) # Get boxes pred_boxes = pred_dict['pred_boxes'] if torch.isnan(pred_boxes).any(): raise ValueError("Network outputs is NAN! Stop Training") num_queries = pred_boxes.size(1) pred_boxes_vec = box_cxcywh_to_xyxy(pred_boxes).view(-1, 4) # (B,N,4) --> (BN,4) (x1,y1,x2,y2) gt_boxes_vec = box_xywh_to_xyxy(gt_bbox)[:, None, :].repeat((1, num_queries, 1)).view(-1, 4).clamp(min=0.0, max=1.0) # (B,4) --> (B,1,4) --> (B,N,4) # compute giou and iou try: giou_loss, iou = self.objective['giou'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) except: giou_loss, iou = torch.tensor(0.0).cuda(), torch.tensor(0.0).cuda() # compute l1 loss l1_loss = self.objective['l1'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) # compute location loss if 'score_map' in pred_dict: location_loss = self.objective['focal'](pred_dict['score_map'], gt_gaussian_maps) else: location_loss = torch.tensor(0.0, device=l1_loss.device) rank_loss = self.loss_rank(pred_dict,gt_dict['search_anno'], gt_dict['template_anno']) # weighted sum loss = self.loss_weight['giou'] * giou_loss + self.loss_weight['l1'] * l1_loss + self.loss_weight['focal'] * location_loss + rank_loss*1.2 if return_status: # status for log mean_iou = iou.detach().mean() status = {"Loss/total": loss.item(), "Loss/giou": giou_loss.item(), "Loss/l1": l1_loss.item(), "Loss/location": location_loss.item(), "IoU": mean_iou.item()} return loss, status else: return loss def _random_permute(self,matrix): # matrix = random.choice(matrix) b, c, h, w = matrix.shape idx = [ torch.randperm(c).to(matrix.device) for i in range(b)] idx = torch.stack(idx, dim=0)[:, :, None, None].repeat([1,1,h,w]) # idx = torch.randperm(c)[None,:,None,None].repeat([b,1,h,w]).to(matrix.device) matrix01 = torch.gather(matrix, 1, idx) return matrix01 def crop_flag(self, flag, global_index_s, global_index_t,H1 = 64, H2 = 256): B,Ls = global_index_s.shape B, Lt = global_index_t.shape B,C,L1,L2 = flag.shape flag_t = flag[:,:,:H1,:] flag_s = flag[:,:,H1:,:] flag_t = torch.gather(flag_t,2,global_index_t[:,None,:,None].repeat([1,C,1,L2]).long()) flag_s = torch.gather(flag_s,2,global_index_s[:,None,:,None].repeat([1,C,1,L2]).long()) flag = torch.cat([flag_t, flag_s], dim = 2) flag_t = flag[:,:,:,:H1] flag_s = flag[:,:,:,H1:] flag_t = torch.gather(flag_t,3,global_index_t[:,None,None,:].repeat([1,C,int(Ls+Lt),1]).long()) flag_s = torch.gather(flag_s,3,global_index_s[:,None,None,:].repeat([1,C,int(Ls+Lt),1]).long()) flag = torch.cat([flag_t, flag_s], dim = 3) B, C, L11, L12 = flag.shape try: assert(L11 == int(Lt + Ls)) assert(L12 == int(Lt + Ls)) except: print('L11:{}, L12:{}, L1:{}, L2:{}'.format(L11, L12, L1, L2)) return flag def crop_fusion(self, flag, attn, global_index_s, global_index_t,H1 = 64, H2 = 256 ): flag = self.crop_flag(flag=flag, global_index_s=global_index_s, global_index_t=global_index_t) B,C,L1,L2 = flag.shape Ba, Ca, La, La2 = attn.shape _,idx1 = flag.mean(dim=3,keepdim=False).sort(dim=2,descending=True) # print('shape of flag:{}, idx1:{}'.format(flag.shape, idx1[:,:,:32,None].repeat([1,Ca,1,L2]).shape)) flag = torch.gather(flag,2,idx1[:,:,:32,None].repeat([1,C,1,L2]).long()) attn = torch.gather(attn,2,idx1[:,:,:32,None].repeat([1,Ca,1,L2]).long()) _,idx2 = flag.mean(dim=2,keepdim=False).sort(dim=2,descending=True) flag = torch.gather(flag,3,idx2[:,:,None,:32].repeat([1,C,32,1]).long()) attn = torch.gather(attn,3,idx2[:,:,None,:32].repeat([1,Ca,32,1]).long()) return attn * flag def loss_rank(self, outputs, targetsi, temp_annoi=None): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. """ attn = outputs['attn'] # print('attn shape:{}'.format(attn.shape)) attn1 = torch.cat([attn[:,:,114:344,57:114], attn[:,:,114:344,344:]],dim=3) attn1 = attn1.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) attn2 = torch.cat([attn[:,:,344:,:57], attn[:,:,344:,114:344]],dim=3) attn2 = attn2.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) # print('attn1 shape:{},attn2 shape:{}, attn:{}'.format(attn1.shape,attn2.shape,attn.shape)) # attn = self._random_permute(attn) # attn = attn[:,:,:,:] # B1, C1, H1, W1 = attn.shape # global_index_s = outputs['out_global_s'] # global_index_t = outputs['out_global_t'] # try: # assert((global_index_s.shape[1] + global_index_t.shape[1])== int(H1/2)) # except: # print('Falut,shape of attn:{}, s:{}, t:{}'.format(attn.shape,global_index_s.shape, global_index_t.shape )) # H1 = int(64) # H2 = int(256) # l_t = int(math.sqrt(64)) # l_s = int(math.sqrt(256)) # temp_anno = temp_annoi[0,:,:] # targets = targetsi[0,:,:] # r_s = torch.arange(l_s).to(temp_anno.device) # r_t = torch.arange(l_t).to(temp_anno.device) # r_t = r_t[None,:].repeat([B1,1]) # cx, cy, w, h = temp_anno[:,0:1], temp_anno[:,1:2], temp_anno[:,2:3], temp_anno[:,3:4] # cx *= l_t # cy *= l_t # w *= l_t # h *= l_t # flagx_01 = r_t >= cx - w/2 # flagx_02 = r_t <= cx + w/2 # flagy_02 = r_t >= cy - h/2 # flagy_01 = r_t <= cy + h/2 # flagx = flagx_01.float()*flagx_02.float() # flagy = flagy_01.float()*flagy_02.float() # flagx = flagx[:,None,:].repeat([1,l_t,1]) # flagy = flagy[:,:,None].repeat([1,1,l_t]) # flag = flagx*flagy # flagt = flag.reshape([B1, H1]) # cx, cy, w, h = targets[:,0:1], targets[:,1:2], targets[:,2:3], targets[:,3:4] # cx *= l_s # cy *= l_s # w *= l_s # h *= l_s # flagx_01 = r_s >= cx - w/2 # flagx_02 = r_s <= cx + w/2 # flagy_02 = r_s >= cy - h/2 # flagy_01 = r_s <= cy + h/2 # flagx = flagx_01.float()*flagx_02.float() # flagy = flagy_01.float()*flagy_02.float() # flagx = flagx[:,None,:].repeat([1,l_s,1]) # flagy = flagy[:,:,None].repeat([1,1,l_s]) # flag = flagx*flagy # flags = flag.reshape([B1, H2]) # flag = torch.cat([flagt, flags], dim=1) # flag_total = flag[:,:,None].repeat([1,1,int(H1+H2)]) * flag[:,None,:].repeat([1,int(H1+H2),1]) # attn1 = self.crop_fusion(flag_total[:,None,:,:], attn, global_index_s, global_index_t) attn = torch.cat([attn1, attn2],dim=1) B, C, H, W = attn.shape # _,s1,_ = torch.svd(attn1.reshape([B*C, H, W])) _,s1,_ = torch.svd(attn.reshape([B*C, H, W])) s01 = torch.abs(s1 - 1) return torch.mean(s01)中的 loss_rank仅仅有一个attn是否存在不对应问题?
answer:根据您提供的代码以及后续描述,`loss_rank`函数确实只处理了一个注意力图(`attn`),但您的模型设计似乎生成了两个注意力图(`attn`和`attn1`),分别对应于两个不同的输入分支。如果您希望评估这两个分支各自的注意力图以及它们的交互或融合效果,确实存在需要调整的地方。 在当前的`loss_rank`实现中,您对`attn` 和 `attn1` 进行了处理,但最终只使用了`attn`的变种(`attn = torch.cat([attn1, attn2],dim=1)`)进行了SVD(奇异值分解)并计算了损失。这意味着`attn1`(从第二个分支的处理结果)并没有直接参与到最终损失的计算中,除非在`torch.cat`的部分中它已经被以某种方式考虑。 # 解决方案 要解决这个问题,保证两个分支的注意力图都得到适当处理,并参与损失计算,您可以进行如下调整: 1. **分别处理两个注意力图**: 在计算损失时,对两个注意力图`attn`和`attn1`分别进行处理。例如,您可以对每个注意力图分别执行SVD,然后基于它们的奇异值计算损失。 2. **结合两个注意力图的损失**: 根据您的模型设计和任务需求,合理地组合来自两个注意力图的损失。如果两个注意力图代表不同模态或不同视角的信息,可能对于最终的任务(如目标跟踪等)具有不同的重要性。因此,损失函数可能需要加权这两种损失,或者设计一种机制来整合这些信息。 # 修改后的代码示例 这是一个简单的修改示例,展示如何单独处理两个注意力图,并简单地将它们的损失相加。请注意,您可能需要根据实际情况调整损失的合并策略。 ```python def loss_rank(self, outputs, targetsi, temp_annoi=None): attn = outputs['attn'] attn1 = outputs.get('attn1', attn) # 以防attn1没有被明确返回 # 分别对attn和attn1进行SVD并计算损失 _, s1, _ = torch.svd(attn.reshape([-1, attn.shape[-2], attn.shape[-1]])) _, s2, _ = torch.svd(attn1.reshape([-1, attn1.shape[-2], attn1.shape[-1]])) # 计算每个奇异值序列与单位向量的偏离 loss_attn = torch.mean(torch.abs(s1 - 1)) loss_attn1 = torch.mean(torch.abs(s2 - 1)) # 组合两个损失(这里简单相加,可能需要根据任务进行加权或其他方式的融合) total_loss = loss_attn + loss_attn1 return total_loss ``` 这个修改确保了两个分支产生的注意力图各自对最终损失的贡献都被考虑进去。需要注意的是,具体的加权或融合策略可能需要根据实际任务和模型表现进行调整。此外,对于如何更有效地融合来自不同分支的信息,可能还需要进一步的研究和实验。
question:那么解读 def loss_rank(self, outputs, targetsi, temp_annoi=None): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. """ attn = outputs['attn'] # print('attn shape:{}'.format(attn.shape)) attn1 = torch.cat([attn[:,:,114:344,57:114], attn[:,:,114:344,344:]],dim=3) attn1 = attn1.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) attn2 = torch.cat([attn[:,:,344:,:57], attn[:,:,344:,114:344]],dim=3) attn2 = attn2.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) attn = torch.cat([attn1, attn2],dim=1) B, C, H, W = attn.shape # _,s1,_ = torch.svd(attn1.reshape([B*C, H, W])) _,s1,_ = torch.svd(attn.reshape([B*C, H, W])) s01 = torch.abs(s1 - 1) return torch.mean(s01)每一行操作
answer:这段代码的`loss_rank`函数设计用于计算基于注意力图的特定损失,以评估模型预测的注意力图如何与一些基准或期望的注意力分布相比较。以下是对每一行操作的逐一解释: 1. **定义函数**:`def loss_rank(self, outputs, targetsi, temp_annoi=None):` 定义了一个名为`loss_rank`的方法,这个方法接收三个参数:`outputs`(模型输出的字典,预期包含注意力图),`targetsi`(目标框信息),以及`temp_annoi`(模板目标框信息,可选)。 2. **选择注意力图**:`attn = outputs['attn']` 从模型的输出字典中提取名为`'attn'`的注意力图。 3. **计算`attn1`**: - `attn[:,:,114:344,57:114], attn[:,:,114:344,344:]` 分别截取并拼接了`attn`中的特定区域,这个操作可能是为了聚焦于注意力图的特定部分,忽略掉图像的其余区域。 - `torch.cat([...], dim=3)` 将两部分水平方向上拼接起来。 - `attn1.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True)` 对拼接后的结果求均值,首先在`dim=0`上(实际是批次维度)求均值,然后在`dim=1`上(通道维度)求均值,从而得到一个在所选择区域上全局平均化的注意力图。 4. **计算`attn2`**: - 类似地,`attn2`通过选择其他区域、拼接、并求平均得到,可能代表不同的关注焦点或是为了提取不同的特征信息。 5. **合并注意力图**:`attn = torch.cat([attn1, attn2], dim=1)` 将`attn1`和`attn2`在通道维度上拼接起来,生成一个综合了两个不同特征聚焦点的新注意力图。 6. **奇异值分解(SVD)**: - `_, s1, _ = torch.svd(attn.reshape([B*C, H, W]))` 对合并后的注意力图进行奇异值分解(SVD),得到其奇异值`s1`。注意力图可能需要被重新整形为二维矩阵以适应SVD的要求。 - 这一步的目的是通过分析奇异值来评估注意力图的结构特性,因为奇异值能够捕捉到矩阵(在这里是注意力图)的重要特征。 7. **计算损失**: - `s01 = torch.abs(s1 - 1)` 计算每个奇异值与1的差的绝对值,从而得到了每个奇异值偏离标准状态(假设为1)的程度。 - `return torch.mean(s01)` 对所有奇异值的偏离程度求平均,返回这个平均值作为损失。这个损失值代表了注意力图的全局特性与某种基准或期望状态的一致性程度。 总体来说,`loss_rank`函数通过聚焦于注意力图的特定区域,合并这些区域的信息,并通过奇异值分解分析这些合并后的信息,以评估模型对于关键信息的捕捉能力和注意力的分布情况。这种方法在特定应用场景中可能非常有用,尤其是当注意力的分布对于任务性能有明显影响时。